

Keith Kotay

3/7/2023

See last slide for Fair Use Notice & Disclaimer

Depth of field (DOF)

(paper at a 45° angle,

bottom closest to camera)

• Distance between the nearest and the furthest objects that are in 'acceptably sharp' focus in an image captured with a camera

deep depth of field (paper at a 45° angle, bottom closest to camera)

- Distance between the nearest and the furthest objects that are in 'acceptably sharp' focus in an image captured with a camera
 - DOF zone boundaries are not sudden changes in sharpness
 - Sharpness transitions gradually from the best focus point
 - DOF boundaries show where the sharpness is no longer 'acceptable'

Depth of field (DOF)

Note: Viewing conditions are things like viewing distance and lighting.

- Distance between the nearest and the furthest objects that are in 'acceptably sharp' focus in an image captured with a camera
 - Acceptably sharp \rightarrow p<u>erception</u> of sharpness (subjective)
 - > Based on: visual acuity, viewing conditions, amount of enlargement
 - Expressed generally by the 'circle of confusion' for an image sensor

Sensor Size	Circle of Confusion
Four Thirds System (Olympus & Panasonic)	0.015 mm
APS-C (crop sensor)	0.018 mm
Full frame (35 mm)	0.029 mm
Medium format 645 (6 cm x 4.5 cm)	0.047 mm
Large format 4x5 (4" x 5")	0.11 mm
Large format 8x10 (8" x 10")	0.22 mm

- Why is it important?
 - Affects subject prominence
 - > Always want the subject in focus
 - > Background may be a distraction \rightarrow prefer it to be blurred
 - DOF needs may be different depending on the subject

Photo Type	Subject	Background	Depth of Field
portrait	face, or just eyes	heavily blurred	very shallow
fashion	body + hair + clothes	blurred	shallow
still life	items on table	some blur	shallow to moderate
street	people + environment	some blur okay	moderate
landscape	entire scene		deep
macro	entire scene		deep (never enough)

Note: Photo by Ed Verosky

- Portrait examples
 - Eyes only

Note: Photo by Jane Allan

- Portrait examples
 - Face only

Depth of field (DOF)

- Portrait examples
 - Background blur

because blurred elements are larger and contrast is lower (small dark areas are

Note: Out-of-focus features can appear brighter

obscured by blurred bright areas).

- > Large aperture (small *f*-number) \rightarrow more blur
- > Small aperture (big *f*-number) \rightarrow less blur

 $f/1.8 \rightarrow$ large aperture, significant blur

 $f/16 \rightarrow$ small aperture, much less blur

Note: Photos by Vit Kovalcik

Depth of field (DOF)

Note: Some landscape photographers may use a shallow DOF for a landscape scene if they want to draw attention to a specific feature.

- Landscape example
 - Want the whole scene in focus (if possible)
 - A person looking at a landscape scene will see everything in focus
 - > The eye automatically refocuses when looking at different elements

landscape images often feature a foreground object to give depth to the image → this should be as sharp as the rest of the scene, which requires very large DOF...

...it's possible to 'cheat' by compositing two images with smaller DOF, but it's usually not easy

Depth of field (DOF)

- Formula
 - DOF $\approx (2 \cdot d^2 \cdot f \cdot c) / L^2$
 - d = distance to subject
 - f = f-number
 - > c = circle of confusion
 - L = lens focal length

Note: distance and focal length contribute more to DOF than *f*-number because those values are squared, but they usually offset each other → longer focal length means more distance to subject for the same framing Note: circle of confusion is fixed for a specific camera, so it's effect is ignored here \rightarrow it is only relevant if you are choosing between cameras with a different sensor sizes.

Depth of field (DOF)

- Focal length effects
 - Angle of view change
 - > Longer focal length \rightarrow less background visible
 - Compression
 - > Longer focal length \rightarrow background appears closer

24 mm focal length

300 mm focal length

Note: Photos by Elizabeth Gray

Note: Standing close to a subject when using a wide angle lens can result in facial distortion → a telephoto lens renders a more natural face

Note: Photos by Elizabeth Gray

Depth of field (DOF)

• DOF asymmetry

Note: The total DOF for 24 mm @ 6 ft = 9 ft, but the total DOF for 300 mm @ 75 ft (equal subject size) = 6.3 ft. We'll see why in a bit...

- Sometimes similar in front and behind the focus point
- Other times more DOF behind the focus point
 - > 24 mm, f/5.6, 6 ft to subject \rightarrow 2 ft in front, 7 ft behind
 - > 300 mm, f/5.6, 75 ft to subject \rightarrow 3 ft in front, 3.3 ft behind

24 mm focal length

300 mm focal length

Achieving desired DOF

• Lens markings

- Note: Unfortunately these markings are often missing on modern lenses, and manufacturers usually do not supply equivalent information on the LCD.
- Some lenses have features that help with DOF control
 - > Focus distance scale (feet and meters)
 - > DOF markings
 - > Aperture ring

selected aperture and focus distance marker

The focus distance scale is not linear which makes estimating the actual DOF tricky, and often there are no DOF markings for larger apertures (f/2.8, f/2, f/1.4). But it's better than nothing.

indicated DOF is a bit less than 4 ft to 7 ft = \sim 3.1 ft

Achieving desired DOF

• Charts

- Note: This worked for nature and landscape photography, where scenes are static and there is plenty of time to refer to the chart.
- In 2006 I created DOF charts for use in the field
 - Focal length; circle of confusion value (x1000); *f*-numbers
 - Focus distances (meters); near DOF distances; far DOF distances

50	11.0	2.828	2.828	4.000	4.000	5.657	5.657	8.000	8.000	11.31	11.31	16.00	16.00	22.63	22.63	32.00	32.00	64.00	64.00	128.0	128.0
	2.8	2.732	2.931	3.810	4.210	5.285	6.085	7.276	8.885	9.918	13.17	13.34	19.98	17.66	31.50	22.89	53.18	35.63	314.5	49.36	00
	3.2	2.721	2.944	3.788	4.237	5.243	6.142	7.196	9.007	9.770	13.44	13.08	20.61	17.19	33.08	22.11	57.87	33.79	603.9	45.91	∞
	3.6	2.708	2.959	3.764	4.268	5.196	6.208	7.108	9.147	9.609	13.75	12.79	21.36	16.70	35.07	21.31	64.23	31.94	80	42.57	00
	4.0	2.694	2.976	3.737	4.303	5.145	6.283	7.013	9.311	9.435	14.13	12.48	22.27	16.18	37.60	20.47	73.26	30.10	8	39.35	00
	4.5	2.678	2.995	3.707	4.343	5.088	6.369	6.908	9.50	9.247	14.57	12.16	23.39	15.64	40.92	19.61	87.00	28.26	80	36.27	00
	5.0	2.661	3.017	3.674	4.389	5.026	6.468	6.795	9.73	9.045	15.10	11.81	24.80	15.07	45.41	18.72	110.2	26.46	80	33.35	•••
	5.7	2.642	3.042	3.638	4.442	4.959	6.584	6.672	9.99	8.828	15.75	11.44	26.59	14.47	51.80	17.81	157.2	24.68	80	30.58	00
	6.3	2.621	3.071	3.598	4.503	4.885	6.719	6.539	10.30	8.597	16.54	11.06	28.93	13.86	61.51	16.90	302.0	22.96	80	27.97	•••
	7.1	2.598	3.103	3.554	4.574	4.805	6.877	6.396	10.68	8.351	17.54	10.65	32.11	13.24	77.91	15.97	8	21.28	80	25.53	00
	8.0	2.572	3.141	3.506	4.655	4.718	7.064	6.242	11.14	8.092	18.80	10.24	36.63	12.60	111.2	15.05	8	19.68	80	23.25	
	9.0	2.544	3.184	3.454	4.751	4.624	7.285	6.079	11.70	7.819	20.46	9.803	43.50	11.95	213.5	14.13	8	18.14	80	21.13	•••
	10.1	2.513	3.234	3.397	4.863	4.522	7.552	5.905	12.40	7.534	22.71	9.359	55.09	11.29	8	13.23	8	16.67	80	19.17	00
	11.3	2.479	3.291	3.336	4.995	4.414	7.875	5.721	13.29	7.238	25.90	8.906	78.62	10.64	8	12.34	80	15.29	00	17.36	00
	12.7	2.442	3.359	3.269	5.151	4.298	8.272	5.529	14.47	6.932	30.76	8.448	151.0	9.993	80	11.48	80	13.99	∞	15.70	00
	14.3	2.402	3.438	3.198	5.340	4.176	8.768	5.327	16.06	6.618	38.96	7.986	80	9.353	8	10.64	80	12.76	∞	14.18	•••
	16.0	2.358	3.531	3.121	5.568	4.046	9.401	5.118	18.32	6.298	55.60	7.524	80	8.726	8	9.838	80	11.62	00	12.79	00
	18.0	2.311	3.642	3.039	5.849	3.909	10.23	4.901	21.75	5.973	106.8	7.066	80	8.116	8	9.069	80	10.57	80	11.52	00
	20.2	2.261	3.775	2.952	6.200	3.767	11.35	4.679	27.55	5.647	80	6.614	80	7.525	8	8.337	80	9.586	00	10.36	∞
	22.6	2.207	3.936	2.861	6.647	3.619	12.95	4.453	39.31	5.321	80	6.171	80	6.956	8	7.645	80	8.682		9.313	•••

Achieving desired DOF

• Calculators

Note: Charts and calculators require that you know the focus distance. If your camera/lens does not tell you, you have to measure or estimate.

- DOFMaster: www.dofmaster.com
 - Standalone program and online calculator

Camera, film format, o	or circle of confusion	n	Subject distance	75 ft
Nikon D800		~	Depth of field	
Focal length (mm)	300 🗸		Near limit	71.9 ft
			Far limit	78.3 ft
Selected f-stop	1/5.6 🗸		Total	6.39 ft
Subject distance	75	feet 🗸		
			In front of subject	3.06 ft (48%)
			Behind subject	3.33 ft (52%)
	Calculate			
			Hyperfocal distance	1740.9 ft
			Circle of confusion	0.03 mm

Achieving desired DOF

- Calculators
 - Cell phone and tablet apps
 - > Many available for Android and iPhone/iOS

Note: Charts and calculators require that you know the focus distance. If your camera/lens does not tell you, you have to measure or estimate.

'DOF' app, Android, free

Achieving desired DOF

• Camera

Note: Error messages if the DOF cannot be obtained. Unclear what happens when one of the AF points is not on a subject, or if AF points can be selected.

- Canon A-DEP mode (Automatic Depth-of-Field AE)
 - 1. Set the mode dial to A-DEP
 - 2. Focus the subject
 - → Aim the AF points over the subjects and half press the shutter
 - → All the subjects covered by AF points flashing red will be in focus
 - 3. Take the picture
 - Error messages if the DOF cannot be obtained
 - > Unclear what happens if one or more AF points is not on a subject
- Better implementation (doesn't exist ?)
 - Single focus point
 - Set amount of DOF
 - > After focusing camera sets *f*-number

Achieving desired DOF

Note: Diffraction can be mitigated somewhat by sharpening, but over-sharpening introduces it's own artifacts.

- Diffraction: the fly in the ointment
 - As the aperture gets smaller the image become more blurred
 - > More blur everywhere, even at the best focus point
 - > Due to the diffraction of light waves through a small opening
 - Exists at every aperture, but is insignificant at larger apertures
 - > Introduces a trade-off between DOF and diffraction

f/5.6

Achieving desired DOF

Note: Diffraction can be mitigated somewhat by sharpening, but over-sharpening introduces it's own artifacts.

- Diffraction: the fly in the ointment
 - As the aperture gets smaller the image become more blurred
 - > More blur everywhere, even at the best focus point
 - > Due to the diffraction of light waves through a small opening
 - Exists at every aperture, but is insignificant at larger apertures
 - Introduces a trade-off between DOF and diffraction
 - When diffraction becomes noticeable (rule of thumb)
 - Full frame: f/11 (slight), f/16 (obvious)
 - APS-C: f/8 (slight), f/11 (obvious)
 - ➤ 4/3 system: *f*/5.6 (slight), *f*/8 (obvious)

Hyperfocal distance

• DOF asymmetry

Note: The hyperfocal distance (HD) depends on lens focal length, *f*-number, and circle of confusion. At the HD, the DOF is the maximum for those parameters.

- Focus dist. approaches a key value \rightarrow far DOF goes way up
 - > In fact, it goes to infinity at what is called the "hyperfocal distance"

Hyperfocal distance

• DOF asymmetry

Note: The hyperfocal distance (HD) depends on lens focal length, f-number, and circle of confusion. At the HD, the DOF is the maximum for those parameters.

- Focus dist. approaches a key value \rightarrow far DOF goes way up
 - > In fact, it goes to infinity at what is called the "hyperfocal distance"

Camera, film format, or circle of confusion	Subject distance	12 ft	
Sony A900, A850 Focal length (mm) 35 Selected f-stop f/11 Subject distance 12 Calculate	Depth of field Near limit Far limit Total In front of subject Behind subject Hyperfocal distance Circle of confusion	5.99 ft Infinity Infinite 6 ft Infinite 12 ft	

Hyperfocal distance

• DOF asymmetry

- Note: The markings on a lens designed for a 35mm film camera are not accurate for a crop sensor digital camera because the circle of confusion is different.
- Focus dist. approaches a key value \rightarrow far DOF goes way up
 - > In fact, it goes to infinity at what is called the "hyperfocal distance"

Camera, film format, or circle of confusion	Subject distance 12 ft
Sony A900, A850 🗸	Depth of field
Focal length (mm)35 Selected f-stopf/11 Subject distance12	Near limit 5.99 ft Far limit Infinity Total Infinite
Calculate	Behind subject Unfinite Hyperfocal distance 12 ft Circle of confusion 0.03 mm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
€ 16 11 8 4 ♦ R 8 11 16 35 mm	
2.8 4 5.6 8 11 16	

Hyperfocal distance

- Landscape example
- Note: Optimal focus only occurs at the subject distance → although objects at infinity may not be as sharp, they are still 'acceptably sharp' (depending on viewing conditions)
- Want the whole scene in focus (if possible)
 - A person looking at a landscape scene will see everything in focus
 - > The eye automatically refocuses when looking at different elements

landscape images often feature a foreground object to give depth to the image → this should be as sharp as the rest of the scene, which requires very large DOF...

Hyperfocal distance

- Street photography example near DOF and sacrifice some far DOF (a lot if you move far from the HD).
 - Don't want to take time to focus (or don't want camera at eye level)

Note: If you reduce the subject distance from

the hyperfocal value you will get a closer

- > Use manual focus, set your lens to a HD \rightarrow a large in-focus range
- ≻ Example: FF camera, 35mm lens, $f/11 \rightarrow \text{DOF} = 6.33$ ft to ∞
- > You can reduce the subject distance to get closer focus (or increase *f*-#)

hyperfocal distance chart for 35mm (full frame) sensor cameras

					f	-numbe	er				
		1.4	2	2.8	4	5.6	8	11	16	22	
	14	15.8	11.1	7.92	5.54	3.96	2.77	2.02	1.39	1.01	14
	near	7.93	5.55	3.97	2.78	1.99	1.40	1.02	0.70	0.52	near
	16	20.7	14.5	10.3	7.24	5.17	3.62	2.63	1.81	1.32	16
	near	10.4	7.25	<u>5.18</u>	3.63	2.60	1.82	1.33	0.92	0.67	near
	18	26.2	18.3	13.1	9.16	6.55	4.58	3.33	2.29	1.67	18
	near	13.1	9.18	6.56	4.60	3.29	2.31	1.68	1.16	0.85	near
	21	35.6	24.9	17.8	12.5	8.91	6.24	4.54	3.12	2.27	21
	near	17.8	12.5	8.93	6.25	4.47	3.14	2.29	1.58	1.15	near
	24	46.5	32.6	23.3	16.3	11.6	8.15	5.92	4.07	2.96	24
	near	23.3	16.3	11.7	8.17	5.84	4.09	2.98	2.06	1.50	near
	28	63.4	44.3	31.7	22.2	15.8	11.1	8.06	5.54	4.03	28
	near	31.7	22.2	15.9	11.1	7.94	5.57	4.05	2.79	2.04	near
	35	99.0	69.3	49.5	34.6	24.7	17.3	12.6	8.66	6.30	35
	near	49.5	34.7	24.8	17.4	12.4	8.69	6.33	4.36	3.18	near

You can get hyperfocal distance charts from DOFMaster.com, and DOF apps show the hyperfocal distance-but I wanted to know the HD and the near focus distance so I made my own chart (I'll make a PDF available so you can print your own)

Hyperfocal distance

- Focal length effects
 - Telephoto lens hyperfocal distances are very large
 - Scales as the focal length squared
 - Still can be useful for sports

85	584	409	292	204	146	102	74.3	51.1	37.2	85	
near	292	204	146	102	73.1	51.2	37.2	25.6	18.6	near	
100	808	566	404	283	202	141	103	70.7	51.4	100	
near	404	283	202	141	101	70.8	51.5	35.4	25.8	near	
135	1473	1031	736	515	368	258	187	129	93.7	135	
near	736	516	368	258	184	129	93.8	64.5	47.0	near	
150	1818	1273	909	<mark>636</mark>	455	318	231	159	116	150	
near	909	636	455	318	227	159	116	79.7	58.0	near	
200	3232	2263	1616	1131	808	566	411	283	206	200	
near	1616	1131	808	566	404	283	206	142	103	near	
250	5051	3535	2525	1768	1263	884	<mark>6</mark> 43	442	321	250	
near	2525	1768	1263	884	632	442	322	221	161	near	
300	7273	5091	3636	2545	1818	1273	926	636	463	300	
near	3637	2546	1818	1273	909	637	463	318	232	near	
	1.4	2	2.8	4	5.6	8	11	16	22		
		distances are in feet									

Shooting considerations

- Process
 - 1. Pick your subject
 - 2. Decide on your composition
 - > Includes angle of view and compression effect \rightarrow focal length
 - > Affects where you can stand \rightarrow subject distance and focal length
 - 3. Decide what you want in focus
 - > May affect \rightarrow focal length and/or subject distance
 - > Definitely affects \rightarrow *f*-number
 - 4. Be mindful of shutter speed
 - May need to adjust ISO—remember that ISO affects noise
- Photography is a balancing act \rightarrow all about trade-offs
 - It may seem complicated at first (and maybe tedious)
 - But as you gain experience the process becomes automatic

Note: Even if you tend to shoot dynamic subjects, it's a good idea to try some deliberate shooting where you think about each step of the process \rightarrow it helps 'train' your photographic mind.

Fair Use Notice & Disclaimer

This presentation contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. I am making such material available for educational purposes. I believe this constitutes a fair use of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material in this presentation is distributed without profit to those who have attended the presentation for their educational use.

Please address any comments or requests to remove copyrighted material to: contact@bellallum.kotay.net