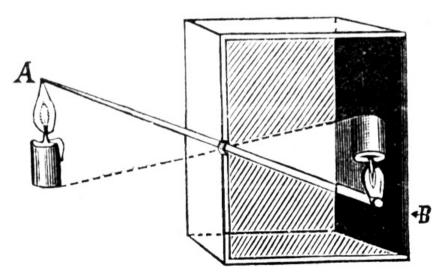
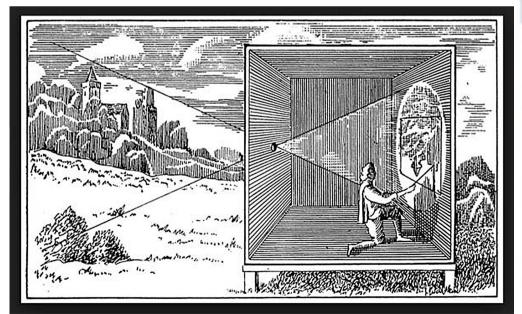


Introduction to the Digital Camera

Part 4 – Lenses

Keith Kotay


Introduction


- Camera lens
 - Optical device used to project an image onto a light sensitive medium
- History
 - Pinhole effect

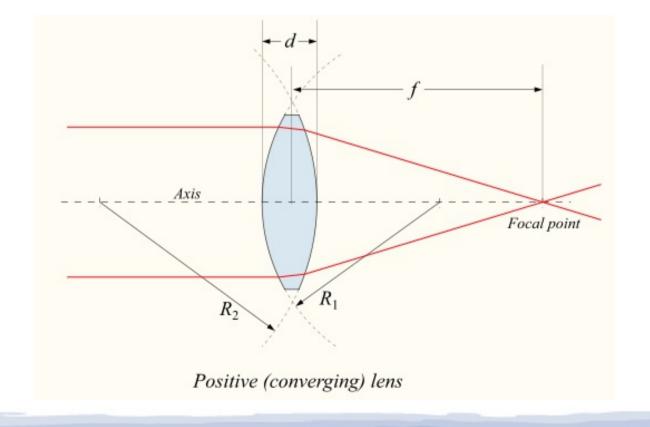
multiple solar eclipse images projected by small openings between leaves ("pinholes")

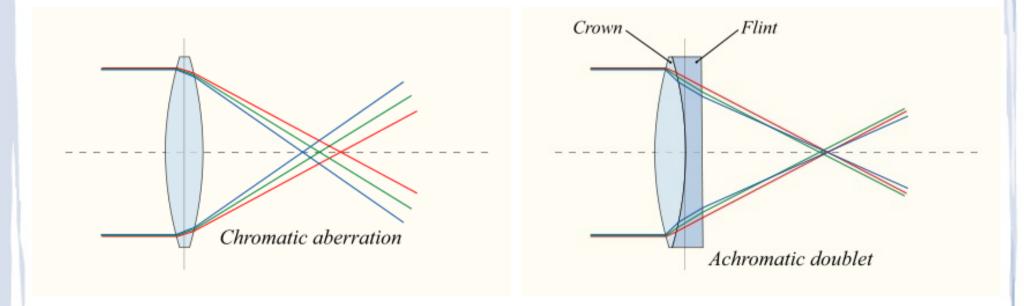
- Camera lens
 - Optical device used to project an image onto a light sensitive medium
- History
 - Pinhole effect
 - Camera obscura

- Camera lens
 - Optical device used to project an image onto a light sensitive medium
- History
 - Pinhole effect
 - Camera obscura
- Camera types
 - Fixed lens: point & shoot, cell phone
 - May be able to add "supplemental lenses"

- Camera lens
 - Optical device used to project an image onto a light sensitive medium
- History
 - Pinhole effect
 - Camera obscura
- Camera types
 - Fixed lens: point & shoot, cell phone
 - May be able to add "supplemental lenses"
 - Interchangeable lens: DSLR, mirrorless

- Lens construction
 - Pinhole lens
 - No glass
 - Cheap
 - > Make your own!





- Lens construction
 - Normal lens \rightarrow glass used to gather light

- Lens construction
 - Normal lens \rightarrow glass used to gather light
 - > Multiple glass 'elements' \rightarrow single element cannot focus all colors

Introduction

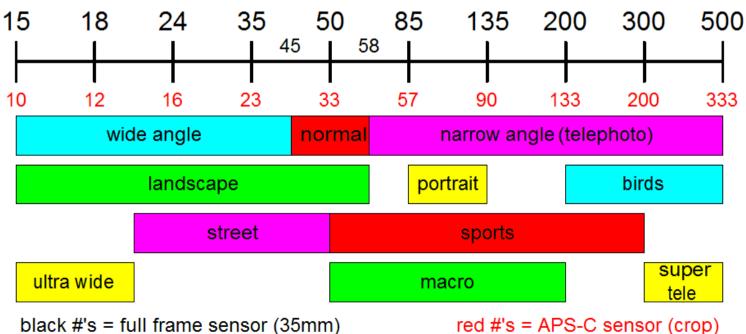
- Lens construction
 - Normal lens

Air-Glass Surface Light Loss

No coating.....4.0% Single coating...1935....1.3% Multi coating......1970.....0.25% Nano coating.....2005....0.05%

- > Multiple glass 'elements' \rightarrow single element cannot focus all colors
- > May have exotic glass types or shapes \rightarrow exotic = expensive
- > Coatings reduce reflections, improve contrast \rightarrow more elements

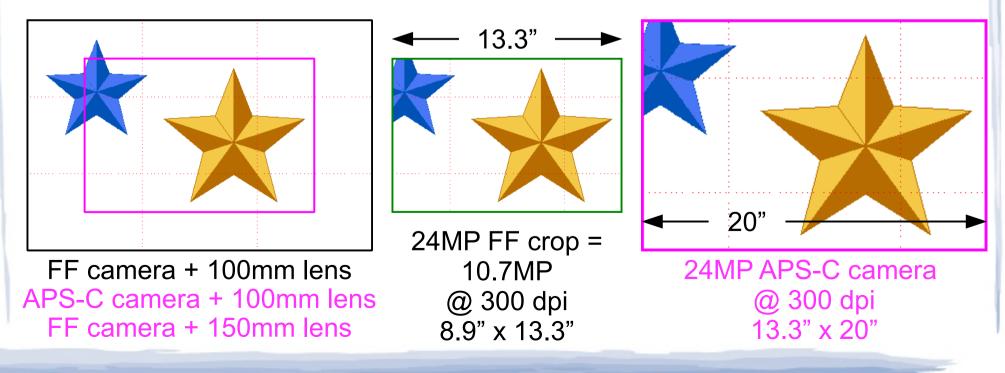
aspherical


"F" low dispersion super low dispersion

multi coated lens with green & magenta reflections

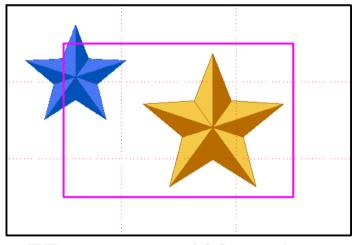
Sigma 35mm F1.4 DG HSM ART

- Focal length
 - Measure of how strongly light converges
 - > Short focal length \rightarrow light converges faster
 - > Determines magnification \rightarrow longer focal length = more mag.
 - Ideal focal length depends on application



Lens properties

- Focal length
 - Crop factor (Nikon, Sony, Pentax = 1.5; Canon = 1.6; 4/3 = 2.0)
 - Focal length adjustment for equivalent angle of view (AOV)
 - > AOV depends on focal length and sensor size
 - > DOF: focal length, sensor size, **# of pixels**, subject dist., and aperture


Full Frame

APS-C

Lens properties

- Focal length
 - Crop factor (Nikon, Sony, Pentax = 1.5; Canon = $\overline{1.6}$; 4/3 = 2.0)
 - Focal length adjustment for equivalent angle of view (AOV)
 - > AOV depends on focal length and sensor size
 - > DOF: focal length, sensor size, subject distance, and aperture

FF camera + 100mm lens APS-C camera + 100mm lens FF camera + 150mm lens Equilavent Images (ISO & shutter speed equal)

Full Frame

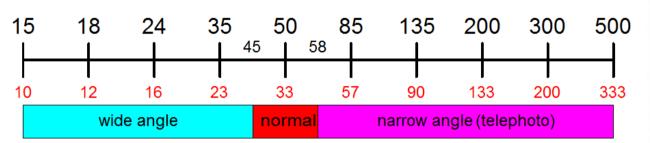
APS-C

Sensor Size	Pixels	Focal Length	<i>f</i> -num	Subject Dist.	DOF
Full Fr.	24 MP	150 mm	8.0	10 ft	0.66 ft
APS-C	24 MP	100 mm	5.6	10 ft	0.70 ft

8.0 / 1.5 = $5.33 \rightarrow 5.6$ is nearest to 5.33

Lens properties

- Focal length
 - "Prime" lens
 - Single focal length
 - > Easiest to design \rightarrow best optical quality
 - > Not as convenient \rightarrow have to change lenses


Zoom lens

- ➤ Range of focal lengths → larger range has more compromises
- > More difficult to design \rightarrow cannot compete with best primes
- > More convenient \rightarrow larger & heaver, but lighter than several primes

- Focal length
 - "Prime" lens
 - Single focal length
 - > Easiest to design \rightarrow best optical quality
 - > Not as convenient \rightarrow have to change lenses
 - Zoom lens
 - ➤ Range of focal lengths → larger range has more compromises
 - > More difficult to design \rightarrow cannot compete with best primes
 - > More convenient \rightarrow larger & heaver, but lighter than several primes
 - Lens "kit"
 - Try to cover most used focal lengths
 - → Primes → 21 f/2.8, 35 f/2, 50 f/1.4, 85 f/1.4, 100 macro, 135 f/2
 - > Zooms \rightarrow 16-35 *f*/4, 24-70 *f*/2.8, 70-200 *f*/2.8 –or– 28-300 *f*/3.5-5.6
 - > Primes + zooms → 16-35 f/4, 50 macro, 85 f/1.8, 70-200 f/4

Lens properties

• Aperture

- Effective light gathering area
 - Controlled by lens design (focal length & element size) and diaphragm
 - Maximum aperture occurs when diaphragm is "wide open"
 - > A "fast" lenses has a larger max. aperture than a "slow" lens

"slow" 50mm f/3.5 diameter ≈ 14mm

"fast" 50mm f/1.4 diameter ≈ 36mm 6.6x the area

Lens properties

Full Fr.	24 MP	150 mm	8.0	10 ft	0.66 ft
APS-C	24 MP	100 mm	5.6	10 ft	0.70 ft

• Aperture

150mm / 8 = 18.75 \rightarrow 100mm / 18.75 = 5.33

- f-number = (focal length) / (optical diameter)
 - Examples: 50mm / 14.3mm = f/3.5; 50mm / 35.7mm = f/1.4
 - Expresses light gathering capability independently of focal length
 - As diaphragm is closed, *f*-number increases (optical diameter decreases)

"slow" 50mm *f*/3.5 diameter ≈ 14mm



"fast" 50mm f/1.4 diameter ≈ 36mm 6.6x the area

Lens properties

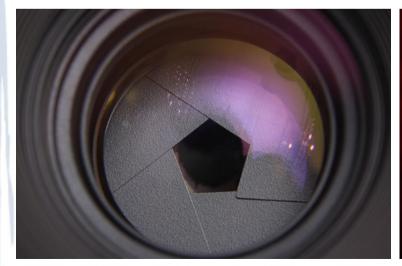
• Aperture

- "Fast" lenses are desirable
 - Small DOF if desired → portrait photography
 - Faster shutter speed or lower ISO in low light conditions
 - > Better autofocus in low light \rightarrow AF done wide open, so more light

"slow" 50mm f/3.5 diameter ≈ 14mm

"fast" 50mm f/1.4 diameter ≈ 36mm 6.6x the area

Lens properties


• Aperture

- "Fast" lenses are desirable
 - ➤ Small DOF if desired → portrait photography
 - Faster shutter speed or lower ISO in low light conditions
 - > Better autofocus in low light \rightarrow AF done wide open, so more light
- Constant aperture zoom lenses are desirable
 - Do not change *f*-number when focal length is changed
 - > Example: 24-70 *f*/2.8 vs. 24-85 *f*/3.5-4.5
 - > Not considered a "pro" lens \rightarrow exposure values can change


- Aperture
 - Number of blades
 - > Affects out-of-focus object shape when stopped down
 - > 6 or 8 was common, but sometimes 15 or more were used
 - > 10 or 12 can be found on some modern lenses (increases cost)

- Aperture
 - Number of blades
 - > Affects out-of-focus object shape when stopped down
 - > 6 or 8 was common, but sometimes 15 or more were used
 - > 10 or 12 can be found on some modern lenses (increases cost)
 - Rounded
 - Helps preserve circular aperture shape

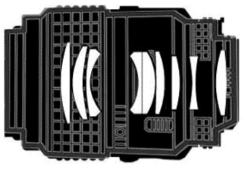
focusing

helicoid

- Focus
 - Manual
 - > Photographer turns ring, elements move
 - > Moving whole lens away from sensor focuses closer
 - Slow, but can be very precise (modern DSLR focusing screens don't help)
 - Many photographers enjoy using manual focus lenses (not for sports)

- Focus
 - Manual
 - > Photographer turns ring, elements move
 - > Moving whole lens away from sensor focuses closer
 - Slow, but can be very precise (modern DSLR focusing screens don't help)
 - Many photographers enjoy using manual focus lenses (not for sports)
 - Autofocus
 - Motor in lens or camera body changes focus
 - > Fast \rightarrow essential for action photography
 - Errors: calibration, low light hunting, 3rd party lens, wrong AF spot

- Focus
 - Manual



- Photographer turns ring, elements move
- > Moving whole lens away from sensor focuses closer
- Slow, but can be very precise (modern DSLR focusing screens don't help)
- Many photographers enjoy using manual focus lenses (not for sports)
- Autofocus
 - > Motor in lens or camera body changes focus
 - > Fast \rightarrow essential for action photography
 - Errors: calibration, low light hunting, 3rd party lens, wrong AF spot
- Autofocus calibration
 - > More expensive DSLR's allow "micro-adjust" for lens focus
 - Can enter an offset for the lens at one subject distance
 - Sigma "Global Vision" lenses can be adjusted using USB dock

Lens properties

- Focus
 - Near vs. far

some elements move for focusing

CRC: other elements move to help close focusing

- Some lenses perform better at close range, others at infinity
- > Close range correction (CRC) \rightarrow "floating" elements help near focus
- Need to rely on reviews or user reports (fredmiranda.com forums)
- Focus throw
 - \succ How far the focusing ring is turned from min. focus dist. (MFD) to ∞
 - > More throw allows for more precise manual focus \rightarrow slower AF
 - > AF lenses can have a throw of $< 90^{\circ}$ macro lenses can have 720°
- Focus-by-wire
 - ▹ MF ring tells body what user wants → body tells lens how to move
 - > Often seen on non-interchangeable lens cameras
 - Now common on some mirrorless camera systems (Sony E-mount)
 - ➤ Can be "velocity controlled" → slower turn increases precision

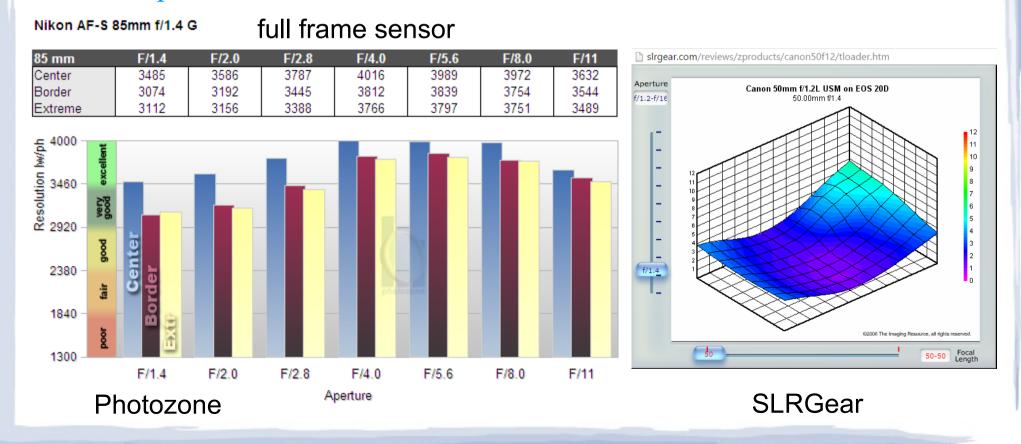
Lens qualities

• Resolution

- Ability of lens to resolve fine detail
 - ➤ Often called "sharpness" → sharpness is "acutance" (edge contrast)
 - Acutance can be increased in postprocessing, resolution cannot

High acutance Low resolution

High acutance High resolution

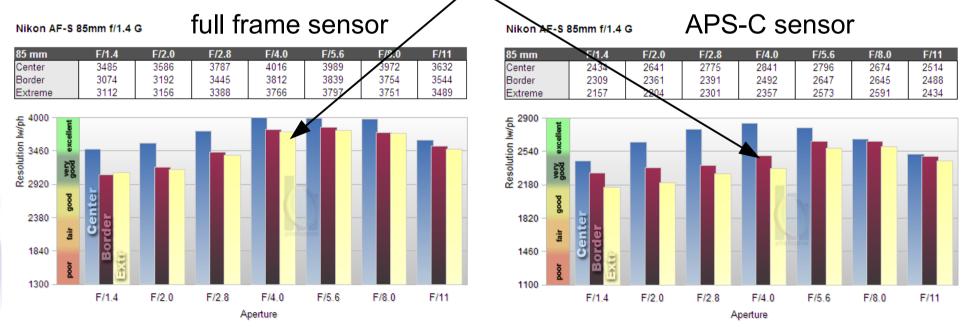

Lens qualities

Resolution

• Lens testing

Note: lenses are normally tested at only one subject distance – test results are only a guide for what may occur at other distances

Graph of resolution for different areas and different f-numbers

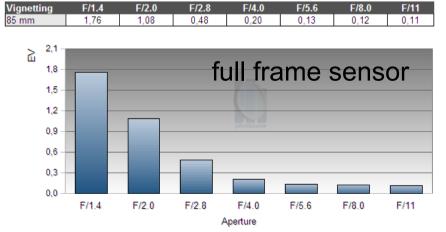


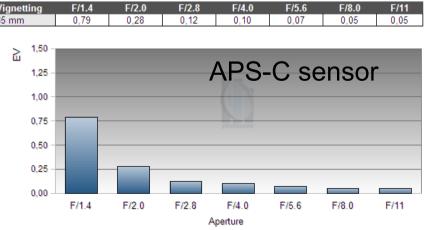
Lens qualities

- Resolution
 - Lens testing

Note: at small apertures (large fnumber) diffraction occurs, causing loss of resolution – noticeable beyond *f*/11 for full frame, *f*/8 for APS-C

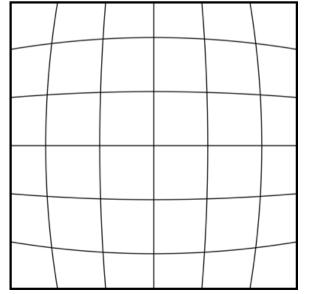
- Graph of resolution for different areas and different *f*-numbers
- Cannot compare resolution numbers between different sensors
- > Usually smaller sensors do better at the borders (but not in this case)

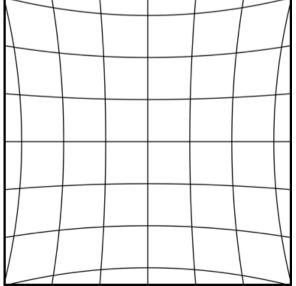


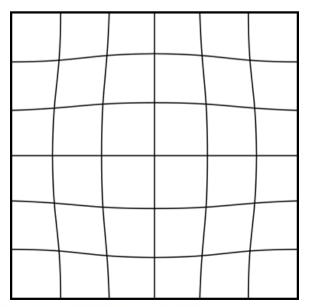

Lens qualities

• Vignetting

- Reduction of image brightness away from image center
 - Common with older lenses or fast lenses used wide open
 - > Can be corrected in an image editor \rightarrow some quality loss in corners
- Lens testing
 - School of brightness reduction at border for different *f*-numbers
 - Vignetting decreases as aperture size decreases (larger *f*-number)
 - Smaller sensor will always perform better

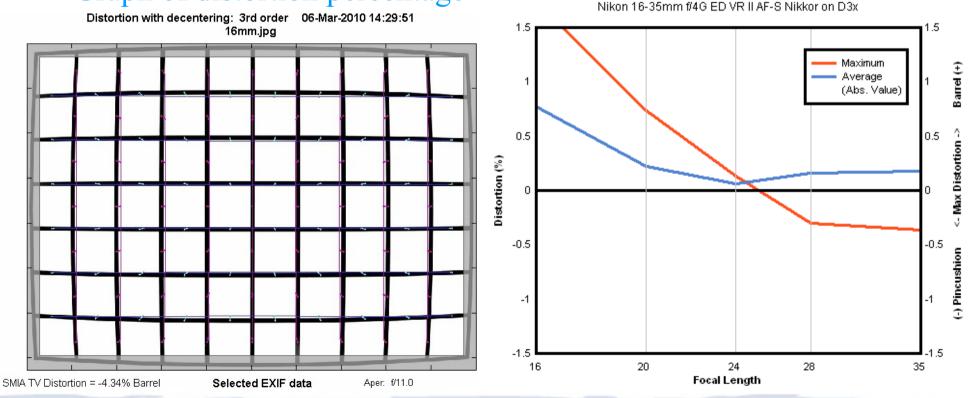





Lens qualities

• Distortion

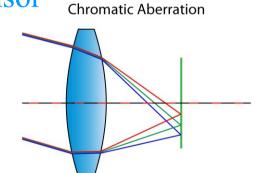
- Deviation from rectilinear projection (straight lines are straight)
 - > Barrel \rightarrow uniform barrel can be fixed in most image editors
 - > Pincushion \rightarrow uniform pincushion can be fixed in most image editors
 - \succ Mustache \rightarrow non-uniform barrel and/or pincushion distortion
 - Mustache distortion can only be fixed with a specific lens profile


Lens qualities

• Distortion

Note: wide angle zooms often have barrel distortion at the lower focal lengths, and pincushion distortion at the higher focal lengths

Geometric Distortion

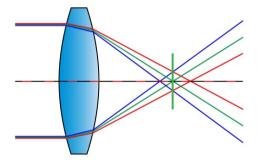

- Lens testing
 - > Pictures of distortion lines and percentage
 - > Graph of distortion percentage

Lens qualities

• Chromatic aberration (CA)

- False color due to improper focusing of light wavelengths
 - > Difficult to get all colors to focus over entire sensor
 - > May improve with smaller aperture
- Lateral (transverse)
 - False colors in the focal plane
 - > Often more obvious near the image border
 - > Red/cyan and blue/yellow color shifts
 - Can be corrected in most image editors

Lateral / Transverse

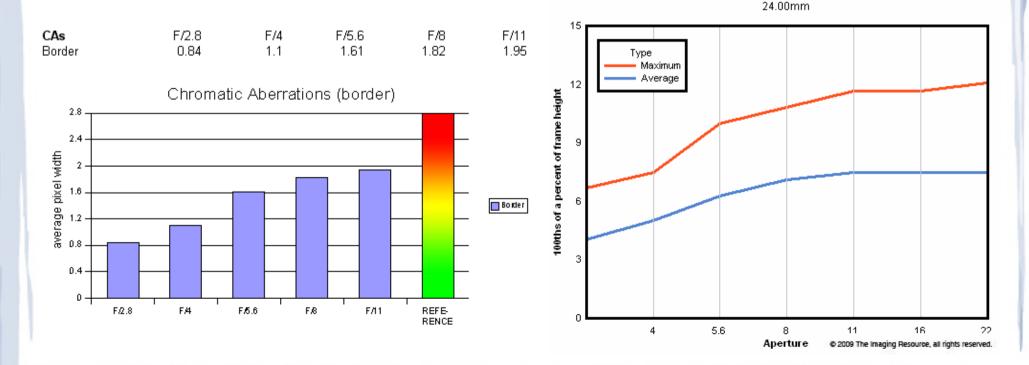


Lens qualities

• Chromatic aberration (CA)

- False color due to improper focusing of light wavelengths
 - > Difficult to get all colors to focus over entire sensor
 - May improve with smaller aperture
- Lateral (transverse)
 - False colors in the focal plane
 - > Often more obvious near the image border
 - > Red/cyan and blue/yellow color shifts
 - Can be corrected in most image editors
- Axial (longitudinal)
 - > False colors in the optical axis: near/far
 - Often seen in out-of-focus areas
 - > Magenta/green color shifts
 - Cannot be corrected

Longitudinal / Axial Chromatic Aberration


Lens qualities

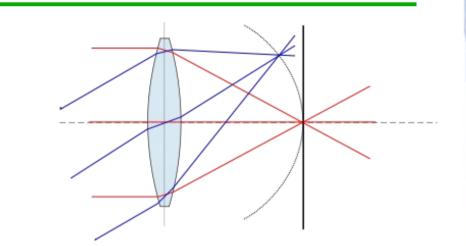
- Chromatic aberration (CA)
 - Lens testing

Note: axial CA may be reported or shown in images, but the test results do not normally include axial CA

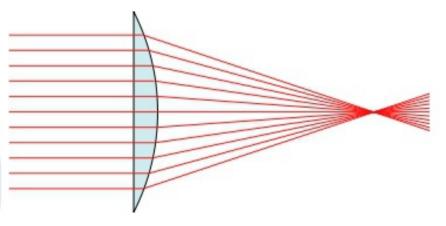
> Chromatic Aberration Nikon 24mm t/2.8 AF Nikkor on D200

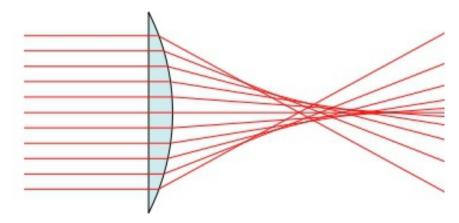
- Number of pixels of CA at different apertures (lateral CA)
- Percentage of frame height (lateral CA)

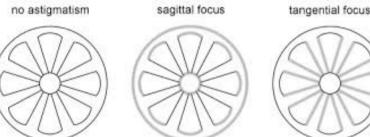
Lens qualities

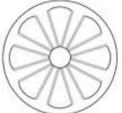

• Flare

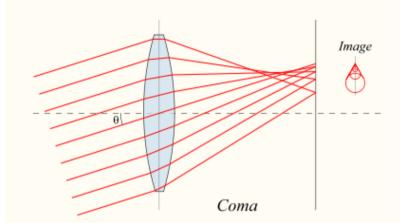
- Undesirable internal reflections inside a lens
 - > Usually seen as spots of color from strong light sources (the sun)
 - Can happen even if the sun is not in the image (close to the edge)
 - Some people don't mind flare others feel it degrades the image
- Prevention
 - > Try to shoot away from the sun
 - Lens shade can reduce or prevent it
- Correction
 - Clone it out in an image editor?


"Late Afternoon Landscape" by Deb Kreider (1st place AS)


- Other aberrations
 - Field curvature
 - In-focus zone is not flat (sensor *is* flat)
 - Cannot be corrected
 - ➤ Most lenses have some field curvature → "flat wall test" may be confusing
 - Macro & "flat field" lenses have minimal field curvature


- Other aberrations
 - Field curvature
 - In-focus zone is not flat (sensor *is* flat)
 - Cannot be corrected
 - Spherical
 - Light rays at the edge of the lens focus differently from center rays
 - > Often seen on older lenses
 - > Improves with smaller aperture cannot be corrected in an editor





- Other aberrations
 - Field curvature
 - In-focus zone is not flat (sensor *is* flat)
 - Cannot be corrected
 - Spherical
 - > Light rays at the edge of the lens focus differently from center rays
 - > Often seen on older lenses
 - > Improves with smaller aperture cannot be corrected in an editor
 - Astigmatism
 - Light in different planes focuses at different points
 - Cannot be corrected

- Other aberrations
 - Field curvature
 - In-focus zone is not flat (sensor is flat)
 - Cannot be corrected
 - Spherical
 - Light rays at the edge of the lens focus differently from center rays
 - > Often seen on older lenses
 - > Improves with smaller aperture cannot be corrected in an editor
 - Astigmatism
 - > Light in different planes focuses at different points
 - Cannot be corrected
 - Coma
 - > Off-axis point sources are distorted (comet or bird shape)
 - Cannot be corrected

Lens qualities

• Contrast

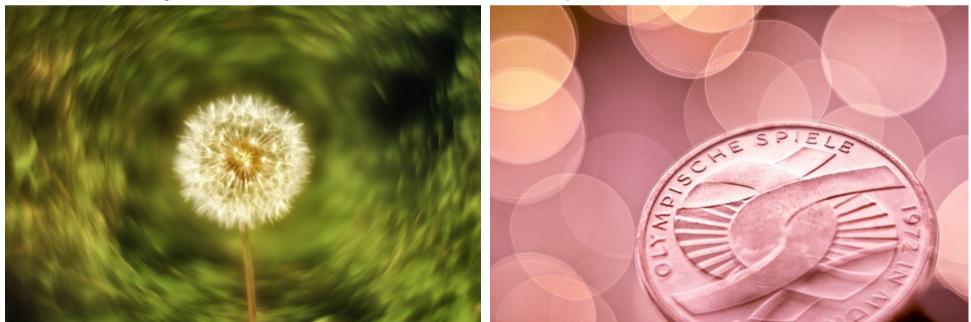
- Difference in brightness or color of objects in an image
 - > Good lenses have high contrast \rightarrow "pop" or "3-D effect"
 - > Affected by the lens coatings which minimize light scattering
- Modifying contrast in an image editor
 - Change overall image contrast
 - "Clarity" feature affects "local contrast" (large scale light/dark transitions)
 - > Unsharp mask improves edge contrast (acutance)

Lens qualities

- Bokeh
 - Quality of the out-of-focus areas in an image
 - Bad bokeh is "nervous" or distracting good bokeh is "creamy"

"busy" bokeh (Sony/Zeiss 24-70)

"nervous" bokeh



Lens qualities

- Bokeh
 - Quality of the out-of-focus areas in an image
 - Bad bokeh is "nervous" or distracting good bokeh is "creamy"

"soap bubble" bokeh (Meyer Trioplan)

"swirly" bokeh (Helios 44)

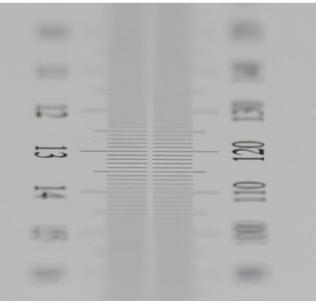
Lens qualities

• Bokeh

- Quality of the out-of-focus areas in an image
 - Bad bokeh is "nervous" or distracting good bokeh is "creamy"
 - > Fast lens wide open maximizes background blur
 - > Affected by subject/camera and subject/background distances "creamy" bokeh

good portrait bokeh

Lens qualities


• Bokeh

- Quality of the out-of-focus areas in an image
 - Bad bokeh is "nervous" or distracting good bokeh is "creamy"
 - > Fast lens wide open maximizes background blur
 - > Affected by subject/camera and subject/background distances
 - False color from axial CA affects quality of bokeh

normal lens with axial CA (wide open)

> APO lens with no axial CA (wide open)

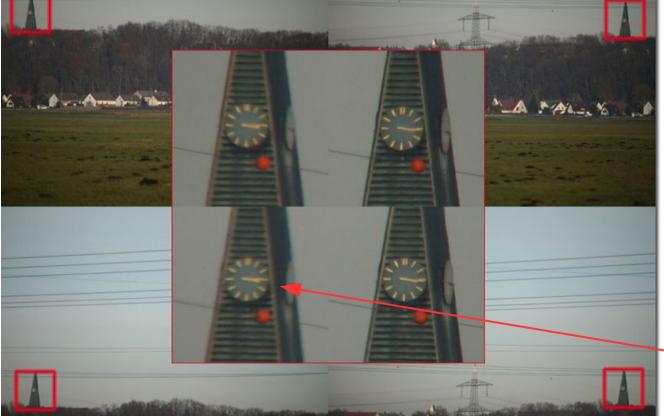
Lens qualities

• Bokeh

- Lens testing
 - ≻ None → completely subjective, must rely on user reports
- Special lenses for good bokeh
 - "Defocus Control" (DC) Nikon 105mm & 135mm
 - Smooth Transition Focus" (STF) Sony 135mm, Laowa 105mm

Lens defects

• Decentering


- One or more elements tilted or offset from optical axis
 - > Usually one side of image is good, and the other side is bad
 - May be more prominent at one end of focus range
- Lens test (Gletscherbruch method) \rightarrow test your new lens
 - 1. Select a near or far object (object > 25 yards away—more for wide angle)
 - 2. Select maximum aperture (lowest f-number), use manual exposure
 - 3. Shoot using cable release or timer—use mirror lockup if available
 - 4. With camera on tripod, manual focus with object in center of lens
 - 5. Without changing focus, move camera using tripod head
 - 6. Take photo with object in each corner of frame
 - 7. All corners should appear the same \rightarrow if not, possible decentering
 - 8. If all corners are worse than the center \rightarrow possible field curvature
 - 9. If #8, try again with smaller aperture (larger f-#) to increase DOF

Lens defects

- Decentering
 - Lens test example

Place object in center of frame and focus manually

Use tripod head to move object to each corner of frame without refocusing – all corners should have similar sharpness

sign of decentering